4.8 Article

Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution

Journal

PLANT PHYSIOLOGY
Volume 190, Issue 1, Pages 403-420

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/plphys/kiac268

Keywords

-

Categories

Funding

  1. Czech Science Foundation [20-03419Y]

Ask authors/readers for more resources

The different rates of postpolyploid genome diploidization in the Microlepidieae tribe result in intra-tribal cladogenesis and are associated with variation in morphological disparity and plastid-nuclear genome coevolution. Faster genome diploidization is positively correlated with mean morphological disparity and evolution of chloroplast genes, while higher speciation rates are observed in perennial species. The study highlights the potential of Microlepidieae as a subject for analyzing postpolyploid genome diploidization in Brassicaceae.
Differently paced postpolyploid diploidization is mirrored by intra-tribal cladogenesis and associates with variation in morphological disparity and plastid-nuclear genome coevolution. Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow (cold) versus fast (hot) genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available