4.0 Article

A DEM analysis of step-path failure in jointed rock slopes

Journal

COMPTES RENDUS MECANIQUE
Volume 343, Issue 2, Pages 155-165

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.crme.2014.11.002

Keywords

Numerical modeling; Discrete element method; Rock slope stability; Step-path failure; Fracturing

Categories

Ask authors/readers for more resources

A numerical analysis of step-path failure mechanisms in rock slopes is Provided based upon simulations performed using a discrete element method specifically enhanced for the modeling of jointed rock masses. Fracturing of the intact rock as well as yielding within discontinuities can be simulated to determine the failure surface without any a priori assumption on its location. For both coplanar and non-coplanar sets of discontinuities, failure is the result of the propagation of tensile microcracks that develop in the rock bridges from the tips of pre-existing discontinuity planes in a way similar to wing cracks extensions that can eventually coalesce to form extended step-path failure surfaces. Sensitivity analyses are performed to better understand the critical mechanisms that lead to slope failure and to discriminate between the respective roles played by intact rock and planes of weakness at the onset of failure. For a randomly distributed set of joints that share the same preferential orientation, failure is shown to be dependent on the frictional strength mobilized on the joint surfaces. The results confirm the critical need for a comprehensive and extensive characterization of both mechanical and geometrical properties of discontinuities when assessing the stability of a rock mass. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available