4.5 Article

Air microfluidics-enabled soft robotic transtibial prosthesis socket liner toward dynamic management of residual limb contact pressure and volume fluctuation

Journal

BIOMICROFLUIDICS
Volume 16, Issue 3, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0087900

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [I2IPJ 560618-21, RGPIN-04151-2018, RGPIN-2015-05317]
  2. NSERC, Government of Ontario
  3. University of Waterloo
  4. Ontario Government
  5. Waterloo Institute of Nanotechnology (WIN)

Ask authors/readers for more resources

Residual limb volume fluctuations and contact pressures are key factors leading to skin ulcerations, pain, and decreased quality of life for transtibial amputees. A novel transtibial prosthetic socket liner with a small air microfluidic chip has been introduced, allowing for dynamic adjustment of the fit between the limb and socket. Proof-of-concept testing has shown that the pressures can be varied and redistributed as desired.
Residual limb volume fluctuation and the resulting contact pressures are some of the key factors leading to skin ulcerations, suboptimal prosthetic functioning, pain, and diminishing quality of life of transtibial amputees. Self-management of socket fit is complicated by peripheral neuropathy, reducing the perception of pressure and pain in the residual limb. We introduce a novel proof-of-concept for a transtibial prosthetic socket liner with the potential to dynamically adjust the fit between the limb and socket. The core of the technology is a small air microfluidic chip (10 cm3 and 10 g) with 10 on-chip valves that enable sequential pressurizing of 10 actuators in custom sizes to match the pressures required by the residual limb's unique anatomy. The microfluidic chip largely reduced the number of electromechanical solenoid valves needed for sequential control of 10 actuators (2 instead of 10 valves), resulting in the reduction of the required power, size, mass, and cost of the control box toward an affordable and wearable prosthetic socket. Proof-of-concept testing demonstrated that the applied pressures can be varied in the desired sequence and to redistribute pressure. Future work will focus on integrating the system with biofidelic prosthetic sockets and residual limb models to investigate the ability to redistribute pressure away from pressure-sensitive regions (e.g., fibular head) to pressure tolerant areas. Overall, the dynamic prosthesis socket liner is very encouraging for creating a dynamic socket fit system that can be seamlessly integrated with existing socket fabrication methods for managing residual limb volume fluctuations and contact pressure. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available