4.3 Article

KDM4C, a H3K9me3 Histone Demethylase, is Involved in the Maintenance of Human ESCC-Initiating Cells by Epigenetically Enhancing SOX2 Expression

Journal

NEOPLASIA
Volume 18, Issue 10, Pages 594-609

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neo.2016.08.005

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [81472234, U1404817]
  2. Key Provincial Medical Sci-Tech Project of Henan [201402026]
  3. Henan Province Education Department Research item [152102310085]

Ask authors/readers for more resources

Our studies investigating the existence of tumor-initiating cell (TIC) populations in human esophageal squamous cell carcinoma (ESCC) had identified a subpopulation of cells isolated from ESCC patient-derived tumor specimens marked by an ALDH(bri+) phenotype bear stem cell-like features. Importantly, KDM4C, a histone demethylase was enhanced in ALDH(bri+) subpopulation, suggesting that strategies interfering with KDM4C may be able to target these putative TICs. In the present study, by genetic and chemical means, we demonstrated that, KDM4C blockade selectively decreased the ESCC ALDH(bri+) TICs population in vitro and specifically targeted the TICs in ALDH(bri+)-derived xenograft, retarding engraftment. Subsequent studies of the KDM4C functional network identified a subset of pluripotency-associated genes (PAGs) and aldehyde dehydrogenase family members to be preferentially down-regulated in KDM4C inhibited ALDH(bri+) TICs. We further supported a model in which KDM4C maintains permissive histone modifications with a low level of H3K9 methylation at the promoters of several PAGs. Moreover, ectopic expression of SOX2 restored KDM4C inhibition-dependent ALDH(bri+) TIC properties. We further confirmed these findings by showing that the cytoplasmic and nuclear KDM4C staining increased with adverse pathologic phenotypes and poor patient survival. Such staining pattern of intracellular KDM4C appeared to overlap with the expression of SOX2 and ALDH1. Collectively, our findings provided the insights into the development of novel therapeutic strategies based on the inhibition of KDM4C pathway for the eliminating of ESCC TIC compartment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available