4.7 Article

Spin Polarized Electronic Transport and Photocurrent in Chiral Methionine Molecule via Magnetic Tunnel Junction Model from First Principles

Journal

ADVANCED QUANTUM TECHNOLOGIES
Volume 5, Issue 9, Pages -

Publisher

WILEY
DOI: 10.1002/qute.202200037

Keywords

chiral methionine; ferromagnetism; photocurrent; spin injection

Funding

  1. National Natural Science Foundation of China [51871161, 52071233]

Ask authors/readers for more resources

This study investigates the spin-dependent electronic transport of chiral amino acids through a magnetic tunnel junction model, revealing the spin polarized photocurrent selectivity and chiral-induced spin selectivity effect under polarized light. The findings provide a theoretical foundation for the applications of chiral molecules in life science and bioelectronic devices.
The spin-dependent transport properties through chiral amino acids and their modulations by light and magnetic field are important for understanding the intrinsic magnetism and photomagnetic coupling of chiral molecules. Here, the spin-dependent electronic transport through chiral methionine (R,S-MET) molecules is studied by theoretical calculations through a magnetic tunnel junction (MTJ) model. R-MET molecule outputs fully spin polarized photocurrents with different spin channels, while S-MET is insensitive under polarized light, revealing the spin polarized photocurrent selectivity of chiral molecules. Photocurrent increases greatly in Fe4N/S-MET/Au MTJ, where S-MET shows unidirectional spin filtering effect. Fully spin polarized photocurrent appears in Fe4N/R,S-MET/Au MTJs, whose spin channel can be switched by adjusting magnetization directions. Particularly, chiral-induced spin selectivity effect appears in Fe4N/R,S-MET/Au MTJs under specific polarized light and magnetization direction. Understanding the spin-dependent electronic transport of chiral amino acids can provide a theoretical foundation for life science and bioelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available