3.9 Article

Experimental and theoretical approaches on thermal and structural properties of Zn doped BSCCO glass ceramics

Journal

MATERIALS SCIENCE-POLAND
Volume 34, Issue 1, Pages 25-32

Publisher

SCIENDO
DOI: 10.1515/msp-2016-0027

Keywords

BSCCO; Zn-doped glass-ceramics; thermal properties

Funding

  1. Scientific Research Projects Foundation of the Gazi University Ankara [BAP 05/2011-47]

Ask authors/readers for more resources

Thermal properties of Cu-Zn partially substituted Bi1.8Sr2Ca2Cu3.2-xZnxO10+delta (x = 0, 0.1 and 0.5) glass-ceramic systems have been investigated with the help of a differential thermal analyzer (DTA) by using Johnson-Mehl-Avrami-Kolmogorov (JMAK) approximation. Non-isothermal crystallization kinetics of the samples has been tested. The calculated values of activation energy of crystallization (E) and Avrami parameter (n) ranged between 306.1 and 338.3 kJ.mol(-1) and 1.29 and 3.59, respectively. Crystallization kinetics was compared following the partial substitution, before and after Zn doping of the sample. In addition, by using a scanning electron microscope (SEM) and X-ray powder diffractometer (XRD), structural properties of Zn doped BSCCO glass-ceramic samples were determined. Surface morphology of the samples was studied by SEM measurements. Lattice parameters and volume of the samples were calculated from the XRD measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available