4.6 Article

Highly efficient ternary solar cells with reduced non-radiative energy loss and enhanced stability via two compatible non-fullerene acceptors

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 10, Issue 29, Pages 15605-15613

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ta03941a

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [51973146]
  2. Jiangsu Provincial Natural Science Foundation [BK20190099]
  3. Collaborative Innovation Center of Suzhou Nano Science Technology
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions
  5. China Scholarship Council

Ask authors/readers for more resources

A ternary strategy of introducing a third component, MOIT-M, into a binary PM6:BTP-eC9 blend has been shown to enhance the efficiency and stability of organic solar cells (OSCs). MOIT-M exhibits complementary absorption spectra and aligned energy levels with the binary blend, promoting light harvesting, exciton dissociation, and charge transport. Furthermore, MOIT-M improves miscibility with BTP-eC9, leading to optimized morphology and reduced non-radiative energy losses. The inclusion of MOIT-M results in a significantly increased PCE of 18.5% and improved storage stability compared to the control binary device with a PCE of 17.4%.
A ternary strategy by introducing a third component into a binary host system has been proven to be a simple and promising method to boost the power conversion efficiency (PCE) and stability of organic solar cells (OSCs). Herein, a high efficient ternary OSC is fabricated, wherein, a non-fullerene acceptor, namely MOIT-M, is introduced as a third component into the PM6:BTP-eC9 blend. MOIT-M possesses good complementary absorption spectra and aligned cascade energy levels with the host binary blend, which benefits light harvesting, exciton dissociation, and charge transport. Moreover, MOIT-M exhibits good miscibility with BTP-eC9, forming a well-mixed phase, which improves molecular packing for better charge transport and optimizes ternary blend morphology. Notably, the incorporation of MOIT-M suppresses non-radiative recombination, leading to reduced non-radiative energy losses (Delta E-nr). As a result, the ternary OSC exhibits a significantly increased PCE of 18.5% with a lower Delta E-nr of 0.21 eV in comparison with the control binary PM6:BTP-eC9 device with a PCE of 17.4% and a Delta E-nr of 0.24 eV. In addition, the ternary OSC displays better storage stability compared to the PM6:BTP-eC9 system. This work indicates that a ternary strategy via combining two compatible small molecule acceptors is effective to simultaneously improve the efficiency and stability of OSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available