4.6 Review

Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase

Journal

RSC ADVANCES
Volume 12, Issue 31, Pages 19764-19855

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ra03081k

Keywords

-

Funding

  1. Deanship of Scientific Research at Umm Al-Qura University [22UQU4320545DSR18]
  2. Higher Education Commission of Pakistan (HEC) [NRPU-6484, NRPU-15800]
  3. United Arab Emirates University (UAEU) of Al-Ain [G00003291]
  4. Research Office [G00003291]

Ask authors/readers for more resources

Heterocycles are widely used in the fields of biology, chemistry, and pharmaceuticals, and play a significant role in nature, medication, and innovation. This review focuses on the role of heterocyclic scaffolds in designing new potential inhibitors for the treatment of Alzheimer's disease (AD) and establishes a structure-activity relationship (SAR) for future drug discovery.
Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure-activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010-2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available