4.8 Article

Electron-phonon relaxation at the Au/WSe2 interface is significantly accelerated by a Ti adhesion layer: time-domain ab initio analysis

Journal

NANOSCALE
Volume 14, Issue 29, Pages 10514-10523

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nr00728b

Keywords

-

Funding

  1. US Department of Defense, Multidisciplinary University Research Initiative [W911NF-16-1-0406]
  2. Semiconductor Research Corporation [2021-NM-3047]

Ask authors/readers for more resources

Thermal transport at nanoscale metal-semiconductor interfaces via electron-phonon coupling plays a crucial role in modern microelectronic, electro-optic, and thermoelectric devices. This study demonstrates that incorporating a thin Ti adhesion layer at the Au/WSe2 interface can enhance the hot electron and hole relaxation rates due to enhanced electron-phonon coupling. The results provide insights for improving the design of materials at metal-semiconductor interfaces by optimizing heat dissipation.
Thermal transport at nanoscale metal-semiconductor interfaces via electron-phonon coupling is crucial for applications of modern microelectronic, electro-optic and thermoelectric devices. To enhance the device performance, the heat flow can be regulated by modifying the interfacial atomic interactions. We use ab initio time-dependent density functional theory combined with non-adiabatic molecular dynamics to study how the hot electron and hole relaxation rates change on incorporating a thin Ti adhesion layer at the Au/WSe2 interface. The excited charge carrier relaxation is much faster in Au/Ti/WSe2 due to the enhanced electron-phonon coupling, rationalized by the following reasons: (1) Ti atoms are lighter than Au, W and Se atoms and move faster. (2) Ti has a significant contribution to the electronic properties in the relevant energy range. (3) Ti interacts strongly with WSe2 and promotes its bond-scissoring which causes Fermi-level pinning, making WSe2 contribute to electronic properties around the Fermi level. The changes in the relaxation rates are more pronounced for excited electrons compared to holes because both relative and absolute Ti contributions to the electronic properties are larger above than below the Fermi level. The results provide guidance for improving the design of novel and robust materials by optimizing the heat dissipation at metal-semiconductor interfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available