4.5 Article

Numerical Simulations for Indirect and Direct Cooling of 54 V LiFePO4 Battery Pack

Journal

ENERGIES
Volume 15, Issue 13, Pages -

Publisher

MDPI
DOI: 10.3390/en15134581

Keywords

lithium-ion battery; battery thermal management; direct cooling; two-phase cooling; numerical simulation

Categories

Funding

  1. National Natural Science Foundation of China [52106226, 51876027, 52176058]
  2. Fundamental Research Funds for the Central Universities, China [DUT20RC(3)095, DUT20JC21]

Ask authors/readers for more resources

This study used three-dimensional thermal simulations to investigate the cooling effects of different methods on a lithium-ion battery pack. It found that single-phase direct cooling with fluorinated liquid can effectively control the temperature and temperature uniformity of the battery pack. The study also proposed two-phase immersion cooling as a promising new cooling method.
In this study, three-dimensional thermal simulations for a 54 V Lithium-ion battery pack composed of 18 LiFePO4 pouch battery cells connected in series were conducted using a multi-scale electrochemical-thermal-fluid model. An equivalent circuit model (ECM) is used as a subscale electrochemical model at each cell node of the battery, which is then combined with the macro-scale thermal and fluid equations to construct a model of the battery and battery pack. With the model, the cooling effects of indirect cooling and direct cooling battery thermal management systems (BTMS) on the battery pack under rapid discharging conditions are explored. It is found that when the battery pack is discharged at 2C, indirect cooling of the bottom plate can effectively dissipate heat and control the temperature of the battery pack. Under the 10C discharging condition, the maximum temperature of the battery pack will exceed 100 degrees C, and the temperature uniformity will be very poor when using indirect cooling of the bottom plate for the battery pack. Direct air cooling is also unable to meet the cooling requirements of the battery pack at a 10C discharging rate. The possible reason is that the convective heat transfer coefficient of direct air cooling is small, which makes it difficult to meet the heat dissipation requirements at the 10C condition. When single-phase direct cooling with fluorinated liquid is used, the maximum temperature of the battery pack under the 10C discharging condition can be controlled at about 65 degrees C. Compared with air direct cooling, the pressure drop of fluorinated liquid single-phase direct cooling is smaller, and the obtained battery pack temperature uniformity is better. From the detailed study of fluorinated liquid single-phase direct cooling, it is concluded that increasing the coolant flow rate and reducing the cell spacing in the battery pack can achieve a better cooling effect. Finally, a new cooling method, two-phase immersion cooling, is investigated for cooling the battery pack. The maximum temperature of the battery pack discharged at a 10C rate can be controlled below 35 degrees C, and good temperature uniformity of the battery pack is also achieved at the same time. This study focuses on fluorinated liquid immersion cooling using numerical simulations, showing that it is a promising cooling method for lithium-ion battery packs and deserves further study. This paper will provide a reference for the design and selection of BTMS for electric vehicles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available