4.7 Article

Integrated PERSEVERE and endothelial biomarker risk model predicts death and persistent MODS in pediatric septic shock: a secondary analysis of a prospective observational study

Journal

CRITICAL CARE
Volume 26, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13054-022-04070-5

Keywords

Sepsis; Septic shock; Multiple organ dysfunction syndrome; Endothelial dysfunction; Precision medicine; Biomarkers; Prognostic enrichment

Funding

  1. [R35 GM126943]

Ask authors/readers for more resources

The newly derived PERSEVEREnce biomarker model reliably estimates the risk of death or persistent organ dysfunctions on day 7 of septic shock. The developed model shows good predictive capability and can be used as a prognostic tool in future pediatric trials of sepsis therapeutics.
Background: Multiple organ dysfunction syndrome (MODS) is a critical driver of sepsis morbidity and mortality in children. Early identification of those at risk of death and persistent organ dysfunctions is necessary to enrich patients for future trials of sepsis therapeutics. Here, we sought to integrate endothelial and PERSEVERE biomarkers to estimate the composite risk of death or organ dysfunctions on day 7 of septic shock. Methods: We measured endothelial dysfunction markers from day 1 serum among those with existing PERSEVERE data. TreeNet (R) classification model was derived incorporating 22 clinical and biological variables to estimate risk. Based on relative variable importance, a simplified 6-biomarker model was developed thereafter. Results: Among 502 patients, 49 patients died before day 7 and 124 patients had persistence of MODS on day 7 of septic shock. Area under the receiver operator characteristic curve (AUROC) for the newly derived PERSEVEREnce model to predict death or day 7 MODS was 0.93 (0.91-0.95) with a summary AUROC of 0.80 (0.76-0.84) upon tenfold cross-validation. The simplified model, based on IL-8, HSP70, ICAM-1, Angpt2/Tie2, Angpt2/Angpt1, and Thrombomodulin, performed similarly. Interaction between variables-ICAM-1 with IL-8 and Thrombomodulin with Angpt2/Angpt1-contributed to the models' predictive capabilities. Model performance varied when estimating risk of individual organ dysfunctions with AUROCS ranging from 0.91 to 0.97 and 0.68 to 0.89 in training and test sets, respectively. Conclusions: The newly derived PERSEVEREnce biomarker model reliably estimates risk of death or persistent organ dysfunctions on day 7 of septic shock. If validated, this tool can be used for prognostic enrichment in future pediatric trials of sepsis therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available