4.8 Article

Transient upregulation of EGR1 signaling enhances kidney repair by activating SOX9+ renal tubular cells

Journal

THERANOSTICS
Volume 12, Issue 12, Pages 5434-5450

Publisher

IVYSPRING INT PUBL
DOI: 10.7150/thno.73426

Keywords

Acute kidney injury (AKI); Early growth response 1 (EGR1); SOX9; Tubular epithelial cells (TECs); Regeneration

Funding

  1. National Natural Science Foundation of China [82000631, 82100713, 82030025, 32000530, 81770664, 81830060]
  2. China Postdoctoral Science Foundation [2021T140791]
  3. National Key Research and Development Program of China [2017YFA0103200, 2017YFA0103203]
  4. National Sciences Foundation of Beijing [7222169]
  5. Fund of Chinese PLA 13th Five Year Plan for Medical Sciences [BLB19J009]
  6. Military Medical Youth Special Project of PLA General Hospital [QNF19035]
  7. Young Elite Scientist Sponsorship Program by CAST [YESS20200400]

Ask authors/readers for more resources

The study found that EGR1 plays a key role in kidney regeneration in AKI. It promotes SOX9(+) cell proliferation by activating the Wnt/beta-catenin pathway.
Background: Acute kidney injury (AKI) is associated with damage to the nephrons and tubular epithelial cells (TECs), which can lead to chronic kidney disease and end-stage renal disease. Identifying new biomarkers before kidney dysfunction will offer crucial insight into preventive and therapeutic options for the treatment of AKI. Early growth response 1 (EGR1) has been found to be a pioneer transcription factor that can sequentially turn on/off key downstream genes to regulate whole-body regeneration processes in the leopard worm. Whether EGR1 modulates renal regeneration processes in AKI remains to be elucidated. Methods: AKI models of ischemia-reperfusion injury (IRI) and folic acid (FA) were developed to investigate the roles of EGR1 in kidney injury and regeneration. To further determine the function of EGR1, Egr1(-/-) mice were applied. Furthermore, RNA sequencing of renal TECs, Chromatin Immunoprecipitation (ChIP) assay, and Dual-luciferase reporter assay were carried out to investigate whether EGR1 affects the expression of SOX9. Results: EGR1 is highly expressed in the kidney after AKI both in humans and mice through analysis of the Gene Expression Omnibus (GEO) database. Furthermore, we verified that EGR1 rapidly up-regulates in the very early stage of IRI and nephrotoxic models of AKI, and validation studies confirmed the essential roles of EGR1 in renal tubular cell regeneration. Further experiments affirmed that genetic inhibition of Egr1 aggravates the severity of AKI in mouse models. Furthermore, our results revealed that EGR1 could increase SOX9 expression in renal TECs by directly binding to the promoter of the Sox9 gene, thus promoting SOX9(+) cell proliferation by activating the Wnt/beta-catenin pathway. Conclusions: Together, our results demonstrated that rapid and transient induction of EGR1 plays a renoprotective role in AKI, which highlights the prospects of using EGR1 as a potential therapeutic target for the treatment of AKI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available