4.7 Article

A Comparative Molecular Dynamics Study of Selected Point Mutations in the Shwachman-Bodian-Diamond Syndrome Protein SBDS

Journal

Publisher

MDPI
DOI: 10.3390/ijms23147938

Keywords

Molecular Dynamics; Shwachman-Diamond Syndrome; Shwachman-Bodian-Diamond Syndrome protein

Funding

  1. CNCCS Consortium Project Collezione di Composti Chimici ed attivita di screening

Ask authors/readers for more resources

Shwachman-Diamond Syndrome (SDS) is a rare genetic disease with no specific treatment currently available. This study used comparative molecular dynamics simulations to analyze three SBDS mutants and found that both an open and closed conformation of SBDS are necessary for its proper function, providing new insights into SDS pathogenesis.
The Shwachman-Diamond Syndrome (SDS) is an autosomal recessive disease whose majority of patients display mutations in a ribosome assembly protein named Shwachman-Bodian-Diamond Syndrome protein (SBDS). A specific therapy for treating this rare disease is missing, due to the lack of knowledge of the molecular mechanisms responsible for its pathogenesis. Starting from the observation that SBDS single-point mutations, localized in different domains of the proteins, are responsible for an SDS phenotype, we carried out the first comparative Molecular Dynamics simulations on three SBDS mutants, namely R19Q, R126T and I212T. The obtained 450-ns long trajectories were compared with those returned by both the open and closed forms of wild type SBDS and strongly indicated that two distinct conformations (open and closed) are both necessary for the proper SBDS function, in full agreement with recent experimental observations. Our study supports the hypothesis that the SBDS function is governed by an allosteric mechanism involving domains I and III and provides new insights into SDS pathogenesis, thus offering a possible starting point for a specific therapeutic option.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available