4.7 Article

Creating a Functional Biomimetic Cartilage Implant Using Hydrogels Based on Methacrylated Chondroitin Sulfate and Hyaluronic Acid

Journal

GELS
Volume 8, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/gels8070457

Keywords

cartilage tissue engineering; chondroitin sulfate methacrylate; hyaluronic acid methacrylate; hydrogel; HydroSpacer; spacer fabric

Funding

  1. Chemelot InSciTe (Project MimiCart) - Regenerative Medicine Crossing Borders

Ask authors/readers for more resources

This study explores a new approach using methacrylated natural polymer hydrogel to mimic the load-bearing properties of cartilage. The results show that using this hydrogel construct can reduce the volumetric swelling of the hydrogel and achieve similar moduli and time constants compared to native bovine cartilage after 28 days.
The load-bearing function of articular cartilage tissue contrasts with the poor load-bearing capacity of most soft hydrogels used for its regeneration. The present study explores whether a hydrogel based on the methacrylated natural polymers chondroitin sulfate (CSMA) and hyaluronic acid (HAMA), injected into warp-knitted spacer fabrics, could be used to create a biomimetic construct with cartilage-like mechanical properties. The swelling ratio of the combined CSMA/HAMA hydrogels in the first 20 days was higher for hydrogels with a higher CSMA concentration, and these hydrogels also degraded quicker, whereas those with a 1.33 wt% of HAMA were stable for more than 120 days. When confined by a polyamide 6 (PA6) spacer fabric, the volumetric swelling of the combined CSMA/HAMA gels (10 wt%, 6.5 x CSMA:HAMA ratio) was reduced by similar to 53%. Both the apparent peak and the equilibrium modulus significantly increased in the PA6-restricted constructs compared to the free-swelling hydrogels after 28 days of swelling, and no significant differences in the moduli and time constant compared to native bovine cartilage were observed. Moreover, the cell viability in the CSMA/HAMA PA6 constructs was comparable to that in gelatin-methacrylamide (GelMA) PA6 constructs at one day after polymerization. These results suggest that using a HydroSpacer construct with an extracellular matrix (ECM)-like biopolymer-based hydrogel is a promising approach for mimicking the load-bearing properties of native cartilage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available