4.6 Article

Experimental investigation of erosion rate for gas-solid two-phase flow in 304 stainless/L245 carbon steel

Journal

PETROLEUM SCIENCE
Volume 19, Issue 3, Pages 1347-1360

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.petsci.2022.01.011

Keywords

Gas-solid flow; Erosion; 304 stainless; L245 carbon steel; Erosion model

Funding

  1. Zhejiang Province Key Research and Development Plan [2021C03152]
  2. Zhoushan Science and Technology Project [2021C21011]
  3. Industrial Project of Public Technology Research of Zhejiang Province Science and Technology Department [LGG18E040001]
  4. Scientific Research Project of Zhejiang Province Education Department [Y20173854]

Ask authors/readers for more resources

The erosion characteristics of 304 stainless steel and L245 carbon steel in gas-solid two-phase flow were investigated. The research found that the most severe erosion occurs at an angle of approximately 30 degrees for both types of steel. The 304 stainless steel and L245 carbon steel were found to be cut at low angles and impacted at high angles to form erosion pits. The erosion rate is not sensitive to short erosion time and a modified erosion model was proposed to accurately predict the erosion under various industrial conditions.
Erosion is one of the most concerning issues in pipeline flow assurance for the Oil & Gas pipeline industries, which can easily lead to wall thinning, perforation leakage, and other crucial safety risks to the steady operation of pipelines. In this research, a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow. Regarding the impacts on erosion rate, the typical factors such as gas velocity, impact angle, erosion time, particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope. Experimental results show that the severest erosion occurs when the angle reaches approximate 30 degrees whether eroded by type I or type II particles, which is observed in both two types of steel. Concretely, 304 stainless steel and L245 carbon steel appear to be cut at low angles, and impacted at high angles to form erosion pits. In the steady operational state, the erosion rate is insensitive to the short erosion time and free from the influences caused by the erosion latent period. Based on the comparison between experimental data and numerical results generated by existing erosion models, a modified model with low tolerance (<3%), high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions. (C) 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available