4.8 Article

Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers

Related references

Note: Only part of the references are listed.
Review Nanoscience & Nanotechnology

Exploiting the paddle-wheel mechanism for the design of fast ion conductors

Zhizhen Zhang et al.

Summary: This article discusses the fundamental principles of designing superionic conductors and how to enhance cation diffusion through the role of framework anion rotational dynamics. By studying the interaction between cations and anions, it is hoped to achieve super-high conductivity in solid electrolytes.

NATURE REVIEWS MATERIALS (2022)

Article Chemistry, Multidisciplinary

Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl2

Jin Su et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries

Hanyu Huo et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Electrochemistry

Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface

Michael Wang et al.

ELECTROCHIMICA ACTA (2019)

Article Chemistry, Physical

Deposition and Confinement of Li Metal along an Artificial Lipon-Lipon Interface

Andrew S. Westover et al.

ACS ENERGY LETTERS (2019)

Article Chemistry, Physical

Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte

Jared Tippens et al.

ACS ENERGY LETTERS (2019)

Article Chemistry, Physical

Atomic Layer Deposition of a Magnesium Phosphate Solid Electrolyte

Jin Su et al.

CHEMISTRY OF MATERIALS (2019)

Article Chemistry, Physical

Elucidating Reversible Electrochemical Redox of Li6PS5CI Solid Electrolyte

Darren H. S. Tan et al.

ACS ENERGY LETTERS (2019)

Editorial Material Multidisciplinary Sciences

The coming electric vehicle transformation

George Crabtree

SCIENCE (2019)

Article Chemistry, Physical

Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes

Kuan-Hung Chen et al.

JOURNAL OF MATERIALS CHEMISTRY A (2017)

Article Chemistry, Physical

Interface Stability in Solid-State Batteries

William D. Richards et al.

CHEMISTRY OF MATERIALS (2016)

Article Chemistry, Multidisciplinary

Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte

Wei Luo et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Review Multidisciplinary Sciences

Why do batteries fail?

M. R. Palacin et al.

SCIENCE (2016)

Editorial Material Energy & Fuels

A solid future for battery development

Juergen Janek et al.

NATURE ENERGY (2016)

Article Chemistry, Multidisciplinary

Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI

Hee Jung Chang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Review Chemistry, Multidisciplinary

Lithium metal anodes for rechargeable batteries

Wu Xu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2014)

Article Chemistry, Physical

Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping

Gregorio F. Ortiz et al.

SOLID STATE IONICS (2014)

Article Materials Science, Multidisciplinary

Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet

Jennifer E. Ni et al.

JOURNAL OF MATERIALS SCIENCE (2012)

Review Multidisciplinary Sciences

Opportunities and challenges for a sustainable energy future

Steven Chu et al.

NATURE (2012)

Article Multidisciplinary Sciences

Building better batteries

M. Armand et al.

NATURE (2008)

Article Chemistry, Multidisciplinary

Fast lithium ion conduction in garnet-type Li7La3Zr2O12

Ramaswamy Murugan et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2007)

Article Chemistry, Physical

Thin-film lithium and lithium-ion batteries

JB Bates et al.

SOLID STATE IONICS (2000)