4.6 Article

MXene-modified molecularly imprinted polymers as an artificial bio-recognition platform for efficient electrochemical sensing: progress and perspectives

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 24, Issue 32, Pages 19164-19176

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cp02330j

Keywords

-

Funding

  1. SERB [IPA/2020/000130]

Ask authors/readers for more resources

The development of efficient electrochemical sensors using molecularly imprinted polymers (MIPs) has gained attention as an alternative to bio-recognition elements. The challenge of stability and sensitivity in MIP-based sensing technology can be addressed by modifying MIPs with electro-active nano-systems such as MXene. This review highlights the use of MXene-modified MIP electrochemical sensing platforms to overcome the limitations of traditional MIPs and discusses the potential applications in point-of-care testing (POCT).
The development of efficient electrochemical sensors of exceptional features, molecularly imprinted polymers (MIPs), has been extensively utilized due to their great vitality as an alternative to bio-recognition elements. MIPs as an artificial bio-recognition element are getting significant attention due to their affordability, easy processability, and scaling-up capabilities. However, the challenge of longer stability and higher sensitivity associated with MIP-based sensing technology is still a remaining challenge. This can be addressed by modifying MIPs with electro-active nano-systems. Correspondingly, MXene is an emerging material of choice to make MIP-based sensing platforms more efficient and develop a bio-active-free sensing system. This review highlights state-of-the-art MXene-modified MIP electrochemical sensing platforms to overcome the associated limitations of pristine MIPs. As a proof-of-concept, the sensitive and selective detection of markers for health monitoring can be efficiently fulfilled by the high-performance MXene-MIP nanocomposite-based electrochemical sensor. Moreover, the challenges associated with this research area along with the potential solutions are also discussed. An attempt has been made to explore MXene-MIP nanocomposites as a next-generation sensing platform suitable for point-of-care testing (POCT) applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available