4.6 Article

Electrochemically stimulated protein release from pH-switchable electrode-immobilized nitroavidin-biotin and avidin-iminobiotin systems

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 24, Issue 33, Pages 19687-19692

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cp02112a

Keywords

-

Funding

  1. Human Frontier Science Program (HFSP) [RGP0002/2018]

Ask authors/readers for more resources

In this study, bovine serum albumin (BSA) was immobilized on a buckypaper electrode using covalent bonds. By controlling the local pH, BSA release was achieved. Blocking the formation of affinity bonds was crucial for protein release.
Bovine serum albumin (BSA), used as a model protein, was immobilized on a buckypaper electrode by formation of covalent bonds with avidin/iminobiotin or nitroavidin/biotin complexes. pH-sensitive affinity interactions between avidin and iminobiotin or between nitroavidin and biotin allowed splitting of the affinity bonds upon pH variation, thus resulting in BSA release. Local (interfacial) pH was changed electrochemically. The pH was decreased upon electrochemical oxidation of ascorbate or increased upon electrochemical reduction of O-2. The local pH change resulted in the weakening of the affinity complexes, resulting in BSA release from the avidin/iminobiotin or nitroavidin/biotin systems when the pH was decreased or increased, respectively. Importantly, protein release was only observed when the number of chemical bonds with the affinity systems was decreased by blocking a part (ca. 50%) of the binding sites in avidin/nitroavidin with iminobiotin/biotin molecules missing the possibility of attaching the protein. Without this blocking effect, multiple bond formation with the protein preserved BSA at the electrode surface, by not allowing its release upon electrochemical pH change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available