4.1 Article

Functional analysis of thermo-sensitive TRPV1 in an aquatic vertebrate, masu salmon (Oncorhynchus masou ishikawae)

Journal

BIOCHEMISTRY AND BIOPHYSICS REPORTS
Volume 31, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.bbrep.2022.101315

Keywords

Capsaicin; Salmonids; Species differences; Thermo -sensor

Funding

  1. JSPS KAKENHI [18H02345, 22K06001, 19K06797]

Ask authors/readers for more resources

This study investigated the functional properties and physiological roles of TRPV1 in masu salmon (Oncorhynchus masou ishikawae), a species of salmonids that prefers cool environments. The results showed that TRPV1 in masu salmon is involved in sensing environmental stimuli such as heat and capsaicin, and may play important roles in avoiding unfavorable environments for survival in aquatic vertebrates.
Transient receptor potential vanilloid 1 (TRPV1) is mainly expressed in nociceptive primary sensory neurons and acts as a sensor for heat and capsaicin. The functional properties of TRPV1 have been reported to vary among species and, in some cases, the species difference in its thermal sensitivity is likely to be associated with thermal habitat conditions. To clarify the functional properties and physiological roles of TRPV1 in aquatic vertebrates, we examined the temperature and chemical sensitivities of TRPV1 in masu salmon (Oncorhynchus masou ishikawae, Om) belonging to a family of salmonids that generally prefer cool environments. First, behavioral experiments were conducted using a video tracking system. Application of capsaicin, a TRPV1 agonist, induced locomotor activities in juvenile Om. Increasing the ambient temperature also elicited locomotor activity potentiated by capsaicin. RT-PCR revealed TRPV1 expression in gills as well as spinal cord. Next, electrophysiological analyses of OmTRPV1 were performed using a two-electrode voltage-clamp technique with a Xenopus oocyte expression system. Heat stimulation evoked an inward current in heterologously expressed OmTRPV1. In addition, capsaicin produced current responses in OmTRPV1-expressing oocytes, but higher concentrations were needed for its activation compared to the mammalian orthologues. These results indicate that Om senses environmental stimuli (heat and capsaicin) through the activation of TRPV1, and this channel may play important roles in avoiding environments disadvantageous for survival in aquatic vertebrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available