4.6 Article

Primary amines from lignocellulose by direct amination of alcohol intermediates, catalyzed by RANEY® Ni

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 12, Issue 19, Pages 5908-5916

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cy00864e

Keywords

-

Funding

  1. European Research Council, ERC [638076]
  2. ERC [875649]
  3. Netherlands Oganization for Scientific Research (NWO) [723.015.005]
  4. China Scholarship Council [201808330391]
  5. European Research Council (ERC) [875649] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Primary amines are important for the synthesis of various industrial products. A comprehensive catalytic strategy allows for the direct sourcing of diverse primary amines from lignocellulosic biomass with minimal purification effort. The core of the methodology is the efficient RANEY (R) Ni-catalyzed hydrogen-borrowing amination of alcohol intermediates.
Primary amines are crucially important building blocks for the synthesis of a wide range of industrially relevant products. Our comprehensive catalytic strategy presented here allows diverse primary amines from lignocellulosic biomass to be sourced in a straightforward manner and with minimal purification effort. The core of the methodology is the efficient RANEY (R) Ni-catalyzed hydrogen-borrowing amination (with ammonia) of the alcohol intermediates, namely alkyl-phenol derivatives as well as aliphatic alcohols, obtained through the two-stage LignoFlex process. Hereby the first stage entails the copper-doped porous metal oxide (Cu20PMO) catalyzed reductive catalytic fractionation (RCF) of pine lignocellulose into a crude bio-oil, rich in dihydroconiferyl alcohol (1G), which could be converted into dihydroconiferyl amine (1G amine) in high selectivity using ammonia gas, by applying our selective amination protocol. Notably also, the crude RCF-oil directly afforded 1G amine in a high 4.6 wt% isolated yield (based on lignin content). Finally it was also shown that the here developed Ni-catalysed heterogeneous catalytic procedure was equally capable of transforming a range of aliphatic linear/cyclic primary/secondary alcohols - available from the second stage of the LignoFlex procedure - into their respective primary amines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available