4.7 Article

Uncertainty partition challenges the predictability of vital details of climate change

Journal

EARTHS FUTURE
Volume 4, Issue 5, Pages 240-251

Publisher

WILEY-BLACKWELL
DOI: 10.1002/2015EF000336

Keywords

Climate change; Climate variability; Precipitation extremes; Stochastic downscaling; Weather generators; Engineering design

Funding

  1. SNSF [P2EZP2-52244]
  2. Stavros Niarchos Foundation
  3. NSF [EAR 1151443]
  4. Division Of Earth Sciences
  5. Directorate For Geosciences [1151443] Funding Source: National Science Foundation

Ask authors/readers for more resources

Decision makers and consultants are particularly interested in detailed information on future climate to prepare adaptation strategies and adjust design criteria. Projections of future climate at local spatial scales and fine temporal resolutions are subject to the same uncertainties as those at the global scale but the partition among uncertainty sources (emission scenarios, climate models, and internal climate variability) remains largely unquantified. At the local scale, the uncertainty of the mean and extremes of precipitation is shown to be irreducible for mid and end-of-century projections because it is almost entirely caused by internal climate variability (stochasticity). Conversely, projected changes in mean air temperature and other meteorological variables can be largely constrained, even at local scales, if more accurate emission scenarios can be developed. The results were obtained by applying a comprehensive stochastic downscaling technique to climate model outputs for three exemplary locations. In contrast with earlier studies, the three sources of uncertainty are considered as dependent and, therefore, non-additive. The evidence of the predominant role of internal climate variability leaves little room for uncertainty reduction in precipitation projections; however, the inference is not necessarily negative, because the uncertainty of historic observations is almost as large as that for future projections with direct implications for climate change adaptation measures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available