4.7 Article

Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect

Journal

COMPOSITES PART B-ENGINEERING
Volume 83, Issue -, Pages 117-133

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2015.08.029

Keywords

Micro-mechanics; Nano-structures; Vibration

Ask authors/readers for more resources

Finite conductivity, surface energy and nonlocal effect can influence the electromechanical performance of micro/nano-electromechanical systems (MEMS/NEMS). However, these factors are yet ignored on stability analysis of MEMS/NEMS fabricated from functionally graded materials (FGM). In this paper, dynamic stability of double-sided NEMS fabricated from non-symmetric FGM is investigated incorporating finite conductivity, surface energy and nonlocal effect. The Gurtin-Murdoch model and Eringen's elasticity are employed to consider the surface energy and nonlocal effect, respectively. Effect of finite conductivity of FGM on electrostatic and Casimir attractions is incorporated via relative permittivity and plasma frequency of the material. The stability analysis of the nanostructure is conducted by plotting time history and phase portraits. Moreover, bifurcation analysis is conducted to investigate the stability of the fixed points of the nano-structure. The validity of the proposed model is examined by comparing the results of the present study with those reported in the literature. The impact of various parameters i.e. finite conductivity, nonlocal parameter, surface stresses and material characteristics on the dynamic instability of the NEMS are addressed. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available