4.3 Article

Surface Reconstruction of Perovskites for Water Oxidation: The Role of Initial Oxides' Bulk Chemistry

Journal

SMALL SCIENCE
Volume 2, Issue 1, Pages -

Publisher

WILEY
DOI: 10.1002/smsc.202100048

Keywords

bulk chemistry; electrocatalysts; perovskite oxides; surface reconstruction of perovskites; water oxidation

Funding

  1. Singapore National Research Foundation under its Campus for Research Excellence and Technological Enterprise (CREATE) program, through the Singapore Berkeley Research Initiative for Sustainable Energy (SinBeRISE)
  2. Cambridge Center for Carbon Reduction in Chemical Technology (C4T)
  3. Singapore Ministry of Education [MOE2018-T2-2-027, 2019-T1-002-125]
  4. eCO2EP programs

Ask authors/readers for more resources

This perspective discusses the surface reconstruction behavior of perovskite oxides as oxygen evolution reaction (OER) catalysts during OER. By manipulating the bulk properties of perovskite precatalysts, the occurrence of surface reconstruction and the formation of actual active surface species can be influenced.
Developing highly active electrocatalysts for oxygen evolution reaction (OER) is crucial for the scalable production of renewable hydrogen fuels by water electrolysis. Perovskite oxides are extensively studied as OER catalysts as they can have high activity and also offer considerable flexibility in composition and structure. Recently, there are increasingly numerous reports regarding dynamic surface reconstruction of perovskite oxides under OER conditions, with claims that the reconstruction-derived species are the actual catalysts responsible for the measured OER activity. To enable rational design of perovskite oxides as precatalysts to generate actual active components in situ, gaining essential understanding of their reconstruction behaviors is crucial. This perspective discusses the roles of initial bulk chemistry in the surface evolution process of perovskite oxides during OER, including the dependency of surface stability on electronic structure of the precatalyst and the possibility of occurrence of lattice oxygen evolution reaction and cation leaching on the surface of a perovskite oxide precatalyst. It is reasonably argued that tailoring the bulk properties of perovskite precatalysts, such as electronic structure, crystallographic structure, and ion stoichiometry, can influence the occurrence of surface reconstruction and the formation of actual active surface species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available