4.7 Article

Shear design of reinforced concrete beams with FRP longitudinal and transverse reinforcement

Journal

COMPOSITES PART B-ENGINEERING
Volume 74, Issue -, Pages 104-122

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2014.12.031

Keywords

Strength; Stress transfer; Analytical modelling; FRP stirrups

Funding

  1. Spanish Ministry of Economy and Competitiveness (MINECO) [BIA2012-36848, BIA2012-31432]
  2. European Regional Development Funds (ERDF)

Ask authors/readers for more resources

The shear resisting mechanisms of reinforced concrete (RC) beams with longitudinal and transverse FRP reinforcement can be affected by the mechanical properties of the FRP rebars. This paper presents a mechanical model for the prediction of the shear strength of FRP RC beams that takes into account its particularities. The model assumes that the shear force is taken by the un-cracked concrete chord, by the residual tensile stresses along the crack length and by the FRP stirrups. Failure is considered to occur when the principal tensile stress at the concrete chord reaches the concrete tensile strength, assuming that the contribution of the FRP stirrups is limited by a possible brittle failure in the bent zone. The accuracy of the proposed method has been verified by comparing the model predictions with the results of 112 tests. The application of the model provides better statistical results (mean value V-test/V-pred equal to 1.08 and COV of 19.5%) than those obtained using the design equations of other current models or guidelines. Due to the simplicity, accuracy and mechanical derivation of the model it results suitable for design and verification in engineering practice. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available