4.5 Article

Hydrodynamical instabilities induced by atomic diffusion in A stars and their consequences

Journal

ASTRONOMY & ASTROPHYSICS
Volume 589, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201628180

Keywords

convection; diffusion; hydrodynamics; stars: abundances

Ask authors/readers for more resources

Aims. Atomic diffusion, including the effect of radiative accelerations on individual elements, leads to important variations of the chemical composition inside the stars. The accumulation in specific layers of the elements, which are the main contributors of the local opacity, leads to hydrodynamical instabilities that modify the internal stellar structure and surface abundances. Our aim is to study these effects and compare the resulting surface abundances with spectroscopic observations Methods. We computed the detailed structure of A-type stars including these effects. We used the Toulouse-Geneva Evolution Code (TGEC), where radiative accelerations are computed using the single valued parameter (SVP) method, and we added double-diffusive convection with mixing coefficients deduced from three-dimensional (3D) simulations. Results. We show that the modification of the initial chemical composition has important effects on the internal stellar mixing and leads to different surface abundances of the elements. The results fit the observed surface chemical composition well if the layers, which are individually mixed by double-diffusive convection, are connected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available