4.5 Article

Setting the volatile composition of (exo)planet-building material Does chemical evolution in disk midplanes matter?

Journal

ASTRONOMY & ASTROPHYSICS
Volume 595, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201628509

Keywords

astrochemistry; planets and satellites: formation; protoplanetary disks; planets and satellites: atmospheres; molecular processes

Funding

  1. European Union A-ERC grant [291141 CHEMPLAN]
  2. Netherlands Research School for Astronomy (NOVA)
  3. Royal Netherlands Academy of Arts and Sciences (KNAW)
  4. Netherlands Organisation for Scientific Research (NWO) [639.041.335]

Ask authors/readers for more resources

Context. The atmospheres of extrasolar planets are thought to be built largely through accretion of pebbles and planetesimals. Such pebbles are also the building blocks of comets. The chemical composition of their volatiles are usually taken to be inherited from the ices in the collapsing cloud. However, chemistry in the protoplanetary disk midplane can modify the composition of ices and gases. Aims. To investigate if and how chemical evolution affects the abundances and distributions of key volatile species in the midplane of a protoplanetary disk in the 0.2-30 AU range. Methods. A disk model used in planet population synthesis models is adopted, providing temperature, density and ionisation rate at different radial distances in the disk midplane. A full chemical network including gas-phase, gas-grain interactions and grain-surface chemistry is used to evolve chemistry in time, for 1 Myr. Both molecular (inheritance from the parent cloud) and atomic (chemical reset) initial conditions are investigated. Results. Great diversity is observed in the relative abundance ratios of the main considered species: H2O, CO, CO2, CH4, O-2, NH3 and N-2. The choice of ionisation level, the choice of initial abundances, as well as the extent of chemical reaction types included are all factors that affect the chemical evolution. The only exception is the inheritance scenario with a low ionisation level, which results in negligible changes compared with the initial abundances, regardless of whether or not grain-surface chemistry is included. The grain temperature plays an important role, especially in the critical 20-28 K region where atomic H no longer sticks long enough to the surface to react, but atomic O does. Above 28 K, efficient grain-surface production of CO2 ice is seen, as well as O-2 gas and ice under certain conditions, at the expense of H2O and CO. H2O ice is produced on grain surfaces only below 28 K. For high ionisation levels at intermediate disk radii, CH4 gas is destroyed and converted into CO and CO2 (in contrast with previous models), and similarly NH3 gas is converted into N-2. At large radii around 30 AU, CH4 ice is enhanced leading to a low gaseous CO abundance. As a result, the overall C/O ratios for gas and ice change significantly with radius and with model assumptions. For high ionisation levels, chemical processing becomes significant after a few times 10(5) yr. Conclusions. Chemistry in the disk midplane needs to be considered in the determination of the volatile composition of planetesimals. In the inner <30 AU disk, interstellar ice abundances are preserved only if the ionisation level is low, or if these species are included in larger bodies within 10(5) yr.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available