4.5 Article

Planck 2015 results XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources

Journal

ASTRONOMY & ASTROPHYSICS
Volume 594, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201525823

Keywords

cosmology: observations; galaxies: clusters: general; catalogs

Funding

  1. ESA
  2. CNES (France)
  3. CNRS/INSU-IN2P3-INP (France)
  4. ASI (Italy)
  5. CNR (Italy)
  6. INAF (Italy)
  7. NASA (USA)
  8. DoE (USA)
  9. STFC (UK)
  10. UKSA (UK)
  11. CSIC (Spain)
  12. MINECO (Spain)
  13. JA (Spain)
  14. RES (Spain)
  15. Tekes (Finland)
  16. AoF (Finland)
  17. CSC (Finland)
  18. DLR (Germany)
  19. MPG (Germany)
  20. CSA (Canada)
  21. DTU Space (Denmark)
  22. SER/SSO (Switzerland)
  23. RCN (Norway)
  24. SFI (Ireland)
  25. FCT/MCTES (Portugal)
  26. ERC (EU)
  27. PRACE (EU)
  28. Higher Education Funding Council for England
  29. Science and Technology Facilities Council
  30. Alfred P. Sloan Foundation
  31. National Science Foundation
  32. US Department of Energy Office of Science
  33. Science and Technology Facilities Council [ST/K002821/1, ST/F01239X/1, ST/M001172/1, ST/K001051/1, ST/K004131/1, ST/L000768/1, ST/L000393/1] Funding Source: researchfish
  34. UK Space Agency [ST/N001095/1, ST/N001206/1, ST/H001239/1] Funding Source: researchfish

Ask authors/readers for more resources

We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky survey of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing > 10(3) confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y-5R500 are robust to pressure-profile variation and beam systematics, but accurate conversion to Y-500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available