4.7 Article

Comparative evaluation of fiber treatments on the creep behavior of jute/green epoxy composites

Journal

COMPOSITES PART B-ENGINEERING
Volume 80, Issue -, Pages 361-368

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2015.06.014

Keywords

Biocomposites; Creep; Interface/interphase; Polymer-matrix composites (PMCs)

Funding

  1. Technical University of Liberec, Czech Republic [SGS-21085]

Ask authors/readers for more resources

This work presents the short term creep behavior of novel treated jute fabric reinforced green epoxy composites. Jute fabric was treated with CO2 pulsed infrared laser, ozone, enzyme and plasma. The treated jute fibers were characterized by scanning electron microscopy (SEM). Composites were prepared by hand layup method and compression molding technique. The creep and dynamic mechanical tests were performed in three-point bending mode by dynamic mechanical analyzer (DMA). The creep strain was experiential to increase with temperature. The treated composites exhibited less creep strain than untreated one at all temperatures. The best result in terms of creep deformation is presented by laser treated composite which dominantly exhibited elastic behavior rather than viscous behavior, especially at higher temperatures. The Burgers four parameters model was used to fit the experimental creep data using R statistical computing software. A good agreement between experimental data and theoretical curves were obtained. Dynamic mechanical analysis results revealed the reduction in the tangent delta peak height of treated composites, might be due to improvement in fiber/matrix interfacial adhesion. The degree of interfacial adhesion between the jute fiber and green epoxy was also anticipated using adhesion factor obtained through DMA data and laser treated composite revealed the better interlocking of fibers and matrix at the interface. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available