4.7 Article

Characteristics of nanoclay and calcined nanoclay-cement nanocomposites

Journal

COMPOSITES PART B-ENGINEERING
Volume 78, Issue -, Pages 174-184

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2015.03.074

Keywords

Nano-structures; Mechanical properties; Thermal properties; Mechanical testing; Thermal analysis

Ask authors/readers for more resources

The influence of nanoclay (NC) and calcined nanoclay (CNC) on the mechanical and thermal properties of cement nano-composites presented. Calcined nanoclay is prepared by heating nanoclay (Cloisite 30B) at 900 degrees C for 2 h. Characterisation of microstructure is investigated using Quantitative X-ray Diffraction Analysis (QXDA) and High Resolution Transmission Electron Microscopy (HRTEM). Estimation of Ca(OH)(2) content in the cement nanocomposite is studied by the combination of QXDA and thermogravimetry analysis (TGA) techniques. Results showed that the mechanical and thermal properties of the cement nanocomposites are improved as a result of NC and CNC addition. An optimum replacement of ordinary Portland cement with 1 wt% CNC is observed through reduced porosity and water absorption as well as increased density, compressive strength, flexural strength, fracture toughness, impact strength, hardness and thermal stability of cement nanocomposites. The microstructural analyses from QXRA and SEM indicate that the CNC acted not only as a filler to improve the microstructure, but also as the activator to support the pozzolanic reaction. Cost-benefit analysis indicates that nanoparticles are expensive but from economic point of view nanoclay is used in very small amount (i.e. 1 wt. %) in cementitious materials. As a result nanoclay does not add any significant cost but improves the mechanical properties significantly. Crown Copyright (C) 2015 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available