4.5 Article

Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz

Journal

ASTRONOMY & ASTROPHYSICS
Volume 592, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201527715

Keywords

instrumentation: detectors; space vehicles: instruments; cosmic background radiation

Funding

  1. European Commission under Framework Programme 7 [Theme SPA.2012.2.2-01, 313320]
  2. SPACEKIDS

Ask authors/readers for more resources

This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (Delta gamma/gamma about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (Am-241) and X sources ((109) Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches. In parallel, we developed an analytical model to rescale the results to what would be observed by such a LEKID array at the second Lagrangian point. We show that LEKID arrays behave adequately in space-like conditions with a measured noise equivalent power close to the cosmic microwave background photon noise and an impact of cosmic rays smaller with respect to those observed with Planck satellite detectors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available