4.7 Review

The interpretation and prediction of lanthanide single-ion magnets from ab initio electronic structure calculation: the capability and limit

Journal

DALTON TRANSACTIONS
Volume 51, Issue 39, Pages 14793-14816

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2dt01507b

Keywords

-

Funding

  1. National Natural Science Foundation of China [21103137]
  2. Henan Science Fund for Excellent Young Scholars [212300410057]
  3. Henan Scientific and Technological Innovation Talents Project [20HASTIT050]

Ask authors/readers for more resources

The single-molecule magnet (SMM) shows potential as a revolutionary micro-electronic device in information technology, but current limitations in performance hinder its real-life application. Progress towards enhancing SMM capabilities depends on understanding and controlling magnetic relaxation, which underlies SMM behaviors. Ab initio electronic structure calculations are crucial in providing knowledge for improving SMM performance, with a focus on precision assessments for rational utilization in future applications.
The single-molecule magnet (SMM) is a fascinating system holding the potential of being a revolutionary micro-electronic device in information technology. However current SMMs are still far away from real-life application due to their limited performance. Progress towards a performance improvement in SMMs relies on the understanding and then regulation of the magnetic relaxation, which is the microscopical process underlying SMM behaviours. Currently, ab initio electronic structure calculation has become the most popular tool to provide such knowledge, and hence a perspective on its capability and limits is highly valuable. In this work, we make such an attempt based on our research experience with an important constituent of SMM, i.e., the lanthanide single-ion magnet (Ln-SIM). Besides some fundamental knowledge, we demonstrate what ab initio calculation applied to Ln-SIMs can provide, including both qualitative interpretation and quantitative prediction. The most optimistic expectation is a prediction of the blocking temperature T-B with a relative deviation of a few tens of percentages. However we must be aware that reliable assessments of the precision of these results, obtained from ab initio calculation, are crucial to conduct a rational utilization of ab initio calculation in SMMs. Thus, based on our experience and understanding, we also provide such assessments for the sake of being unbiased.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available