4.6 Review

One-Dimensional Nanomaterials for Soft Electronics

Journal

ADVANCED ELECTRONIC MATERIALS
Volume 3, Issue 3, Pages -

Publisher

WILEY
DOI: 10.1002/aelm.201600314

Keywords

nanomaterials; one-dimensional materials; soft electronics; wearable electronics

Funding

  1. ARC discovery projects [DP140100052, DP150103750]
  2. Chinese Scholarship Council (CSC)

Ask authors/readers for more resources

Electronics will evolve from current rigid electronics to flexible electronics to ultimate soft stretchable electronics. The currently available, rapidly evolving wearable electronics may be a transitional stage to the future stretchable electronics. One-dimensional (1D) nanomaterials are being extensively used for the design of novel wearable conductors, sensors, and energy devices because 1D nanostructures have an intrinsically high-aspect-ratio that enables the construction of conductive percolation network with small amount of material usage while maintaining high optoelectronic performance. Simultaneously, 1D nanostructures have better mechanical elasticity than corresponding bulk materials or sphere-like nanoparticles and this is a key requirement for designing electronic skin materials by circumventing material delamination and/or cracking. Here, recent progress in 1D nanomaterials based on carbon, metal, metal oxides, polymer, and their hybrid structures is reviewed, focusing on the application of soft wearable electronics. In particular, 1D nanomaterial-based stretchable conductors, wearable pressure and strain sensors, wearable energy storage devices, and stretchable light-emitting diode devices are discussed in detail. Representative fabrication methodologies are described and their advantages/disadvantages are compared. Finally, the innovative application of 1D nanomaterial-based sensors/devices in health and wellness, safety, artificial intelligence, entertainment, and early detection of mental disorders is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available