4.6 Article

Competing magnetic and nonmagnetic states in monolayer VSe2 with charge density wave

Journal

PHYSICAL REVIEW B
Volume 106, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.106.085117

Keywords

-

Funding

  1. U.S. Department of Energy (DOE) , Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
  2. Office of Science of the U.S. Department of Energy [DE-AC05- 00OR22725]
  3. DOE Public Access Plan
  4. UT -Battelle, LLC [DE-AC05-00OR22725]
  5. U.S. Department of Energy

Ask authors/readers for more resources

In this study, the electronic structure of monolayer VSe2 with a specific charge density wave was explored using density functional theory. The results indicate the characteristics of nonmagnetic and ferromagnetic states of VSe2, as well as the competition between various antiferromagnetic fluctuations and CDW order in the material.
The field of two-dimensional ferromagnets has been reinvigorated by the discovery of VSe2 monolayer grown on van der Waals substrates, which is reported to be ferromagnetic with a Curie point higher than 330 K. However, the ferromagnetic and nonmagnetic states of pristine monolayer VSe2 are highly debated. Here, employing density functional theory, Wannier function calculations, and the band unfolding method, we explore N/ N/ the electronic structure of monolayer VSe2 with a root 3 x root 7 charge density wave (CDW). Certain qualitative aspects of the calculated unfolded band dispersion and unfolded Fermi surface of monolayer VSe2 with the root 3 x root 7 CDW in the nonmagnetic state agree well with previous angle-resolved photoemission spectroscopy results, albeit with uncertainty about whether these experiments probed single or multiple domains. Specifically, we find that an isolated CDW domain naturally induces a strong breaking of the threefold symmetry of the electronic structure. In addition we find that, relative to the undistorted structure, the CDW structure shows a strong competition between nonmagnetic and various magnetic states, with an energy difference less than 5 meV/f.u. For the CDW structure in the antiferromagnetic state, the band dispersions and Fermi surface are similar to those in the nonmagnetic state, while the unfolded bands of the ferromagnetic CDW state display a sizable exchange splitting. These results indicate the possibility of various antiferromagnetic fluctuations in VSe2 to coexist and compete with ferromagnetic order and the experimentally reported CDW order. Our calculations build insights for exploring the interplay between magnetism and CDW behaviors more generally in transition metal dichalcogenides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available