4.3 Article

Performance Analyses of Photonic-Crystal Surface-Emitting Laser: Toward High-Speed Optical Communication

Journal

NANOSCALE RESEARCH LETTERS
Volume 17, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1186/s11671-022-03728-x

Keywords

Photonic-crystal surface-emitting laser; Small-signal analysis; Eye diagram; Bit-error-rate test; Optical communication

Funding

  1. Hon Hai Research Institute

Ask authors/readers for more resources

This study comprehensively analyzes the performance of a commercial photonic-crystal surface-emitting laser (PCSEL) using small-signal measurement and bit-error-rate test. The radio frequency characteristics of the PCSEL are also investigated for the first time. Compared to other types of lasers, the PCSEL shows great potential for a wider optical bandwidth. It is demonstrated that the PCSEL can serve as a promising candidate for high-speed optical communication as a light source.
This study conducts comprehensive performance analyses of a commercial photonic-crystal surface-emitting laser (PCSEL) via small-signal measurement and the bit-error-rate test. Meanwhile, the radio frequency characteristics of the PCSEL are unveiled for the first time. Compared to the vertical-cavity surface-emitting lasers, the PCSEL shows great potential for a broader optical bandwidth that is benefited from the high optical-confinement factor. A maximum bandwidth of around 2.32 GHz is experimentally observed when the PCSEL was biased at 340 mA. Moreover, a theoretical calculation was applied to shed light on the characteristics of the small-signal measurement, providing a deep insight into the corresponding intrinsic response model. The signal transmission capability of the PCSEL was investigated as well. The maximum bit rate and corresponding rise time transmitted at 500 Mbps are 1.2 Gbps and 186.16 ps, respectively. Thus, a high-speed PCSEL can be realised with a shrunk form factor, serving as a promising candidate for the next-generation light sources in high-speed optical communication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available