4.5 Article

Small-Molecule Probes Reveal Esterases with Persistent Activity in Dormant and Reactivating Mycobacterium tuberculosis

Journal

ACS INFECTIOUS DISEASES
Volume 2, Issue 12, Pages 48-56

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsinfecdis.6b00135

Keywords

Mycobacterium tuberculosis; esterase; chemical biology; proteomics; fluorescent

Funding

  1. Knight Cancer Institute at OHSU
  2. Collins Medical Trust
  3. Medical Research Foundation of Oregon
  4. NIH [T32-AI07472]

Ask authors/readers for more resources

Mycobacterium tuberculosis (Mtb) is the deadliest bacterial pathogen in the world. An estimated one-third of humans harbor Mtb in a dormant state. These asymptomatic, latent infections impede tuberculosis eradication due to the long-term potential for reactivation. Dormant Mtb has reduced enzymatic activity, but hydrolases that remain active facilitate pathogen survival. We targeted Mtb esterases, a diverse set of enzymes in the serine hydrolase family, and studied their activities using both activity-based probes (ABPs) and fluorogenic esterase substrates. These small-molecule probes revealed functional esterases in active, dormant, and reactivating cultures. Using ABPs, we identified five esterases that remained active in dormant Mtb, including LipM (Rv2284), LipN (Rv2970c), CaeA (Rv2224c), Rv0183, and Rv1683. Three of these, CaeA, Rv0183, and Rv1683, were catalytically active in all three culture conditions. Fluorogenic probes additionally revealed LipH (Rv1399c), Culp1 (Rv1984c), and Rv3036c esterase activity in dormant and active cultures. Esterases with persistent activity are potential diagnostic biomarkers or therapeutic targets for Mtb-infected individuals with latent or active tuberculosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available