3.8 Article

Electrospun Polyurethane and Hydrogel Composite Scaffolds as Biomechanical Mimics for Aortic Valve Tissue Engineering

Journal

ACS BIOMATERIALS SCIENCE & ENGINEERING
Volume 2, Issue 9, Pages 1546-1558

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.6b00309

Keywords

heart valve; tissue engineering; polyurethane; electrospinning

Funding

  1. National Institutes of Health grant [R01HL107765]
  2. National Science Foundation Graduate Research Fellowships

Ask authors/readers for more resources

In this study, a composite scaffold consisting of an electrospun polyurethane and poly(ethylene glycol) hydrogel was investigated for aortic valve tissue engineering. This multilayered approach permitted the fabrication of a scaffold that met the desired mechanical requirements while enabling the 3D culture of cells. The scaffold was tuned to mimic the tensile strength, anisotropy, and extensibility of the natural aortic valve through design of the electrospun polyurethane mesh layer. Valve interstitial cells were encapsulated inside the hydrogel portion of the scaffold around the electrospun mesh, creating a composite scaffold approximately 200 mu m thick. The stiffness of the electrospun fibers caused the encapsulated cells to exhibit an activated phenotype that resulted in fibrotic remodeling of the scaffold in a heterogeneous manner. Remodeling was further explored by culturing the scaffolds in both a mechanically constrained state and in a bent state. The constrained scaffolds demonstrated strong fibrotic remodeling with cells aligning in the direction of the mechanical constraint. Bent scaffolds demonstrated that applied mechanical forces could influence cell behavior. Cells seeded on the outside curve of the bend exhibited an activated, fibrotic response, while cells seeded on the inside curve of the bend were a quiescent phenotype, demonstrating potential control over the fibrotic behavior of cells. Overall, these results indicate that this polyurethane/hydrogel scaffold mimics the structural and functional heterogeneity of native valves and warrants further investigation to be used as a model for understanding fibrotic valve disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available