4.7 Article

Geometric picture for SLOCC classification of pure permutation symmetric three-qubit states

Journal

QUANTUM INFORMATION PROCESSING
Volume 21, Issue 9, Pages -

Publisher

SPRINGER
DOI: 10.1007/s11128-022-03665-9

Keywords

Permutation symmetric states; SLOCC canonical form; Majorana representation; Steering ellipsoid; Volume monogamy

Funding

  1. University Grants Commission (RGNF)
  2. Department of Science and Technology, India [DST/ICPS/QUST/2018/107]
  3. NCN through SHENG [2018/30/Q/ST2/00625]

Ask authors/readers for more resources

The study demonstrates the application of quantum steering ellipsoids in geometric visualization, providing geometric characteristics of different entangled states shared between Alice and Bob. The study also reveals distinct geometric signatures of the steering ellipsoids of SLOCC inequivalent pure entangled three-qubit symmetric states.
The quantum steering ellipsoid inscribed inside the Bloch sphere offers an elegant geometric visualization of two-qubit states shared between Alice and Bob. The set of Bloch vectors of Bob's qubit, steered by Alice via all possible local measurements on her qubit, constitutes the steering ellipsoid. The steering ellipsoids are shown to be effective in capturing quantum correlation properties, such as monogamy, exhibited by entangled multiqubit systems. We focus here on the canonical ellipsoids of two-qubit states realized by incorporating optimal local filtering operations by Alice and Bob on their respective qubits. Based on these canonical forms, we show that the reduced two-qubit states drawn from pure entangled three-qubit permutation symmetric states, which are inequivalent under stochastic local operations and classical communication (SLOCC), carry distinct geometric signatures. We provide detailed analysis of the SLOCC canonical forms and the associated steering ellipsoids of the reduced two-qubit states extracted from entangled three-qubit pure symmetric states: We arrive at (i) a prolate spheroid centered at the origin of the Bloch sphere-with longest semiaxis along the z-direction (symmetry axis of the spheroid) equal to 1-in the case of pure symmetric three-qubit states constructed by permutation of 3 distinct spinors and (ii) an oblate spheroid centered at (0, 0, 1/2) inside the Bloch sphere, with fixed semiaxes lengths (1/root 2, 1/root 2, 1/2), when the three-qubit pure state is constructed via symmetrization of 2 distinct spinors. We also explore volume monogamy relations formulated in terms of the volumes of the steering ellipsoids of the SLOCC inequivalent pure entangled three-qubit symmetric states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available