4.6 Article

Preparation and performance study of a reactive polyurethane hot-melt adhesive/CS-Fe3O4 magnetic nanocomposite film/fabric

Journal

RSC ADVANCES
Volume 12, Issue 42, Pages 27463-27472

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ra05614c

Keywords

-

Funding

  1. Scientific Research Program - Shaanxi Provincial Education Department [21JY015]

Ask authors/readers for more resources

In this study, chitosan-surface-modified magnetic Fe3O4 nanoparticles were synthesized by the sol-gel method and incorporated into a reactive polyurethane hot-melt adhesive. The resulting magnetic nanocomposite films exhibited improved mechanical properties and UV resistance.
Magnetic nanoparticles are attracting significant attention for their wide application as biomaterials and magnetic storage materials. As an environmentally friendly adhesive, reactive polyurethane hot-melt adhesive (PUR) is a biocompatible polymer with a wide range of applications. In this paper, chitosan (CS)-surface-modified magnetic Fe3O4 nanoparticles were synthesized by the sol-gel method. Surface modification of the Fe3O4 nanoparticles with CS enhanced their mechanical properties in PUR. The nanoparticles were characterized by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses, while their surface morphology was elucidated using scanning electron microscopy (SEM) and projection electron microscopy (TEM) techniques. Subsequently, PUR/CS-Fe3O4 magnetic nanocomposite films were prepared using an in situ method, wherein different amounts of CS-surface-modified magnetic Fe3O4 nanoparticles were doped into the PUR and coated on the films. The thermal, UV resistance and mechanical properties of the PUR/CS-Fe3O4 magnetic nanocomposite films were investigated by TGA, UV spectrometer and tensile testing. CS-Fe3O4 nanoparticles were successfully prepared using the sol-gel method and CS to modify the surface of the Fe3O4 nanoparticles. The results show that the mechanical properties and UV resistance of PUR/CS-Fe3O4 magnetic nanocomposites are improved by almost 50%, so the constructed PUR/CS-Fe3O4 magnetic nanocomposites have good UV-resistant properties and mechanical properties. The as-synthesized CS-Fe3O4 magnetic nanocomposites show great potential for application to mechanical and textile development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available