4.5 Article

Microbial paracetamol degradation involves a high diversity of novel amidase enzyme candidates

Journal

WATER RESEARCH X
Volume 16, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.wroa.2022.100152

Keywords

Amidase evolution; Deaminase; Dioxygenase; Metagenomics; Mobile genetic elements; Pseudomonas

Funding

  1. NWO-TTW [15759]
  2. NWO/OCW [SIAM 024002002]

Ask authors/readers for more resources

Pharmaceutical micropollutants pose environmental risks by entering water bodies worldwide. Paracetamol plays a unique role in microbial degradation, but the genes and enzymes involved are still unknown. Metagenomic analysis of a bioreactor revealed a diverse microbial community, including two Pseudomonas species, suggesting a complex pathway for paracetamol degradation.
Pharmaceuticals are relatively new to nature and often not completely removed in wastewater treatment plants (WWTPs). Consequently, these micropollutants end up in water bodies all around the world posing a great environmental risk. One exception to this recalcitrant conversion is paracetamol, whose full degradation has been linked to several microorganisms. However, the genes and corresponding proteins involved in microbial paracetamol degradation are still elusive. In order to improve our knowledge of the microbial paracetamol degradation pathway, we inoculated a bioreactor with sludge of a hospital WWTP (Pharmafilter, Delft, NL) and fed it with paracetamol as the sole carbon source. Paracetamol was fully degraded without any lag phase and the enriched microbial community was investigated by metagenomic and metatranscriptomic analyses, which demonstrated that the microbial community was very diverse. Dilution and plating on paracetamol-amended agar plates yielded two Pseudomonas sp. isolates: a fast-growing Pseudomonas sp. that degraded 200 mg/L of paracetamol in approximately 10 h while excreting 4-aminophenol, and a slow-growing Pseudomonas sp. that degraded paracetamol without obvious intermediates in more than 90 days. Each Pseudomonas sp. contained a different highly-expressed amidase (31% identity to each other). These amidase genes were not detected in the bioreactor metagenome suggesting that other as-yet uncharacterized amidases may be responsible for the first biodegradation step of paracetamol. Uncharacterized deaminase genes and genes encoding dioxygenase enzymes involved in the catabolism of aromatic compounds and amino acids were the most likely candidates responsible for the degradation of paracetamol intermediates based on their high expression levels in the bioreactor meta-genome and the Pseudomonas spp. genomes. Furthermore, cross-feeding between different community members might have occurred to efficiently degrade paracetamol and its intermediates in the bioreactor. This study in-creases our knowledge about the ongoing microbial evolution towards biodegradation of pharmaceuticals and points to a large diversity of (amidase) enzymes that are likely involved in paracetamol metabolism in WWTPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available