4.7 Article

Dark-state-induced heat rectification

Journal

PHYSICAL REVIEW E
Volume 106, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.106.034116

Keywords

-

Funding

  1. Independent Research Fund Denmark DFF-FNU

Ask authors/readers for more resources

Heat and noise control are crucial for the development of quantum technologies. Heat rectifiers, which allow for one-way heat transport, are powerful tools for this purpose. We propose a rectifier based on the unidirectionality of a low temperature bath, which can block heat transport in one configuration but allow it in the other.
Heat and noise control is essential for the continued development of quantum technologies. For this purpose, a particularly powerful tool is the heat rectifier, which allows for heat transport in one configuration of two baths but not the reverse. Here we propose a class of rectifiers that exploits the unidirectionality of a low temperature bath to force the system into a dark state, thus blocking heat transport in one configuration of the two baths. However, if the two baths are switched around, a heat current is observed. An implementation using a qutrit coupled to two harmonic oscillators is proposed and rectification values beyond 103 are achieved for realistic parameter values. Furthermore, we show that the heat current can be amplified by an order of magnitude through external driving without diminishing the diode functionality. The heat rectification effect is seen for a large range of parameters and it is robust towards both decay and dephasing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available