4.7 Article

Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes

Journal

COMPOSITE STRUCTURES
Volume 131, Issue -, Pages 545-555

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2015.06.014

Keywords

Multiscale modeling; Molecular dynamics; Atomistic-based continuum; Carbon nanotube; Interfacial properties; Mechanical properties

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Discovery Accelerator Supplement

Ask authors/readers for more resources

In this study, we investigate the interfacial and mechanical properties of carbon nanotube (CNT) reinforced epoxy composite. The work carried out in two stages. In the first, we conducted molecular dynamics (MD) simulations to determine the atomic-level interfacial and mechanical properties of the transversely isotropic representative volume element (RVE) comprised of CNT-epoxy composite. In the second, the Mod-Tanaka micromechanics scheme was used to scale up the mechanical properties of the atomic structure to the microscale level. The work was further extended and used atomistic-based continuum (ABC) multiscale modeling technique, which makes use of constitutive relations derived solely from interatomic potentials to model the same system. Interestingly, the results of our comparative investigation reveals that (i) the ABC technique and MD simulation provide almost identical predictions for the atomic-level interfacial and mechanical properties of the nanocomposite, (ii) both models predict comparable bulk mechanical properties of the nanocomposite containing randomly dispersed CNTs, and (iii) they also reveal that a higher degree of orthotropy of the nanoscale representative fiber significantly influences the bulk mechanical properties of the nanocomposite. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available