4.7 Article

Manned Mars Mission Analysis Using Mission Architecture Matrix Method

Journal

AEROSPACE
Volume 9, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/aerospace9100604

Keywords

manned Mars mission; mission architecture; mass scale; nuclear thermal propulsion; nuclear electric propulsion

Funding

  1. National Natural Science Foundation of China [41804165]

Ask authors/readers for more resources

Research shows that using modular design and multiple launches, as well as nuclear power engine technology, can significantly reduce the total mass of manned missions to Mars and thus reduce mission costs.
With the development of deep space exploration technology, manned missions to Mars are expected to be realized in the near future. However, the journey to Mars requires more supplies and fuel than near-Earth missions, including moon landings. Using the traditional Apollo-style mission method will result in the spacecraft reaching the LEO mass of 2000 tons, which is not easy to achieve. The use of the modular design method and multiple launches will significantly reduce the mass of a single launch. In addition, the use of nuclear power engines (Nuclear Thermal Propulsion, NTP, and Nuclear Electric Propulsion, NEP) can greatly improve propulsion efficiency, reducing the mass of the propellant. This paper uses the Mission Architecture Matrix (MAM) method to concisely and precisely analyze a series of mission architectures in the case of impulse maneuver transfer and low-thrust transfer. The results show that when only chemical propulsion (specific impulse is 440 s) is used, the maximum LEO launch mass in the optimal mission architecture is 325 tons, and the total LEO mass of the system is 1142 tons. With the usage of NTP (specific impulse is 900 s) and NEP (the specific impulse is 6000 s) technology, the maximum LEO launch mass in the optimal mission architecture is only 85 tons, and the total LEO mass of the system is only about 400 tons. Considering the current rocket technology, the total cost is about USD 1149 million US.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available