4.6 Article

Polymer induced liquid crystal phase behavior of cellulose nanocrystal dispersions

Journal

NANOSCALE ADVANCES
Volume 4, Issue 22, Pages 4863-4870

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2na00303a

Keywords

-

Funding

  1. China Scholarship Council
  2. Swiss National Science Foundation [CRSII5_189917]
  3. Swiss National Science Foundation (SNF) [CRSII5_189917] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

This study investigates the effect of depletion-induced attraction in CNC aqueous dispersions with non-absorbing PEG. The results show that different molecular weights of PEG can lead to changes in CNC self-assembly and phase behavior, enabling precise control of mechanical strength and optical activity.
Cellulose nanocrystals (CNCs) are a promising bio-based material that has attracted significant attention in the fabrication of functional hybrid materials. The rod-like shape and negative surface charge of CNCs enable their rich colloidal behavior, such as a liquid crystalline phase and hydrogel formation that can be mediated by different additives. This study investigates the effect of depletion-induced attraction in the presence of non-absorbing polyethylene glycol (PEG) of different molecular weights in CNC aqueous dispersions, where the polymer molecules deplete the space around particles, apply osmotic pressure and drive the phase transition. Polarized light microscopy (PLM), rheology, small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are used to characterize the phase behavior over a time period of one month. In our results, pure CNC dispersion shows three typical liquid crystal shear rheology regimes and cholesteric self-assembly behavior. Tactoid nucleation, growth and coalescence are observed microscopically, and eventually the dispersion presents macroscopic phase separation. PEG with lower molecular weight induces weak attractive depletion forces. Tactoid growth is limited, and the whole system turns into a fully nematic phase macroscopically. With PEG of higher molecular weight, attractive depletion force becomes predominant, thus CNC self-assembly is inhibited and nematic hydrogel formation is triggered. Overall, we demonstrate that depletion induced attraction forces by the addition of PEG enable precise tuning of CNC self-assembly and phase behavior with controllable mechanical strength and optical activity. These findings deepen our fundamental understanding of cellulose nanocrystals and advance their application in colloidal systems and nanomaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available