4.5 Article

The kidney protects against sepsis by producing systemic uromodulin

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 323, Issue 2, Pages F212-F226

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00146.2022

Keywords

phagocytosis; sepsis; Tamm-Horsfall protein; uromodulin

Funding

  1. National Institute of Diabetes and Digestive and Kidney Diseases Grants [1R01DK111651, P30DK079312]
  2. Veterans Affairs Merit Award
  3. American Society of Nephrology Ben J. Lipps award [5T32DK120524, 1K99DK127216]

Ask authors/readers for more resources

The kidney modulates the immune response in sepsis by enhancing mononuclear phagocyte function through the release of Tamm-Horsfall protein, suggesting potential therapeutic applications in sepsis.
Sepsis is a significant cause of mortality in hospitalized patients. Concomitant development of acute kidney injury (AKI) increases sep-sis mortality through unclear mechanisms. Although electrolyte disturbances and toxic metabolite buildup during AKI could be impor-tant, it is possible that the kidney produces a protective molecule lost during sepsis with AKI. We have previously demonstrated that systemic Tamm-Horsfall protein (THP; uromodulin), a kidney-derived protein with immunomodulatory properties, falls in AKI. Using a mouse sepsis model without severe kidney injury, we showed that the kidney increases circulating THP by enhancing the basolateral release of THP from medullary thick ascending limb cells. In patients with sepsis, changes in circulating THP were positively associ-ated with a critical illness. THP was also found de novo in injured lungs. Genetic ablation of THP in mice led to increased mortality and bacterial burden during sepsis. Consistent with the increased bacterial burden, the presence of THP in vitro and in vivo led mac-rophages and monocytes to upregulate a transcriptional program promoting cell migration, phagocytosis, and chemotaxis, and treat-ment of macrophages with purified THP increases phagocytosis. Rescue of septic THP-/- mice with exogenous systemic THP improved survival. Together, these findings suggest that through releasing THP, the kidney modulates the immune response in sepsis by enhancing mononuclear phagocyte function, and systemic THP has therapeutic potential in sepsis.NEW & NOTEWORTHY Specific therapies to improve outcomes in sepsis with kidney injury have been limited by an unclear understanding of how kidney injury increases sepsis mortality. Here, we identified Tamm-Horsfall protein, known to protect in is-chemic acute kidney injury, as protective in preclinical sepsis models. Tamm-Horsfall protein also increased in clinical sepsis without severe kidney injury and concentrated in injured organs. Further study could lead to novel sepsis therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available