4.7 Article

The polar mesospheric cloud dataset of the Balloon Lidar Experiment (BOLIDE)

Journal

EARTH SYSTEM SCIENCE DATA
Volume 14, Issue 11, Pages 4923-4934

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/essd-14-4923-2022

Keywords

-

Ask authors/readers for more resources

The document describes the research on polar mesospheric clouds (PMCs) observed by the Balloon Lidar Experiment (BOLIDE), including the calculation method of the detection parameter and the scientific exploration of the dataset. The study found that the PMC layer exhibits a variety of responses to larger-scale gravity waves and breaking gravity waves, including accompanying instabilities.
The Balloon Lidar Experiment (BOLIDE) observed polar mesospheric clouds (PMCs) along the Arctic circle between Sweden and Canada during the balloon flight of PMC Turbo in July 2018. The purpose of the mission was to study small-scale dynamical processes induced by the breaking of atmospheric gravity waves by high-resolution imaging and profiling of the PMC layer. The primary parameter of the lidar soundings is the time- and range-resolved volume backscatter coefficient beta. These data are available at high resolutions of 20 m and 10 s (Kaifler, 2021, https://doi.org/10.5281/zenodo.5722385). This document describes how we calculate beta from the BOLIDE photon count data and balloon floating altitude. We compile information relevant for the scientific exploration of this dataset, including statistics, mean values, and temporal evolution of parameters like PMC brightness, altitude, and occurrence rate. Special emphasis is given to the stability of the gondola pointing and the effect of resolution on the signal-to-noise ratio and thus the detection threshold of PMC. PMC layers were detected during 49.7 h in total, accounting for 36.8 % of the 5.7 d flight duration and a total of 178 924 PMC profiles at 10 s resolution. Up to the present, published results from subsets of this dataset include the evolution of small-scale vortex rings, distinct Kelvin-Helmholtz instabilities, and mesospheric bores. The lidar soundings reveal a wide range of responses of the PMC layer to larger-scale gravity waves and breaking gravity waves, including the accompanying instabilities, that await scientific analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available