4.6 Article

Tunable high-sensitivity sensing detector based on Bulk Dirac semimetal

Journal

RSC ADVANCES
Volume 12, Issue 50, Pages 32583-32591

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ra05402g

Keywords

-

Funding

  1. National Natural Science Foundation of China [51606158, 11604311, 61705204, 21506257]
  2. Scientific Research Fund of Si Chuan Provincial Science and Technology Department [2020YJ0137, 2020YFG0467]
  3. Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) [2021L485]
  4. Undergraduate Innovation Fund Project Precision Funding by Southwest University of Science and Technology [JZ21-052, JZ21-057]
  5. College Students' Innovation and Entrepreneurship Training Program [S202110619073, S202110619069, S202110619065]
  6. undergraduate Innovation Fund Project of SWUST [CX 21-099, LX20210067, LX2020010, LX20210001, CX21-008]

Ask authors/readers for more resources

This paper proposes a tunable sensing detector based on Bulk Dirac semimetals, which can realize frequency regulation and multi-frequency controllable sensing by adjusting the Fermi level of the semimetals. The detector exhibits high absorption rate, angular insensitivity, and high sensitivity, making it important for applications such as space detection and high-sensitivity biosensing detection.
This paper proposes a tunable sensing detector based on Bulk Dirac semimetals (BDS). The bottom-middle-top structure of the detector is a metal-dielectric-Dirac semimetal. The designed detector is simulated in the frequency domain by the finite element method (FEM). And the simulation results indicate that the detector achieves three perfect absorption peaks with absorptivity greater than 99.8% in the range of 2.4-5.2 THz. We analyze the cause of the absorption peak by using random phase approximation theory. The device exhibits good angular insensitivity in different incident angle ranges, and the three absorption peaks can reach 90% absorption rate when the incident angle is in the ranges of 0-60 degrees. And when adjusting the Fermi level of BDS in the ranges of 0.1-0.5 eV, our detector can realize the frequency regulation of the ultra-wide range of 3.90-4.56 THz and realize multi-frequency controllable sensing while maintain the absorption efficiency above 96%. The detector has maximum sensitivity S of 238.0 GHz per RIU when the external environment of the refractive index changes from 1.0 to 1.8, and the maximum detection accuracy is 6.5. The device has broad development prospects in the field of space detection and high-sensitivity biosensing detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available