4.6 Article

Reduced-Order Robust Superdirective Beamforming With Uniform Linear Microphone Arrays

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASLP.2016.2568044

Keywords

Beampattern design; cardioid; directivity factor; microphone arrays; robust beamforming; superdirective beamforming; white noise gain

Funding

  1. National Natural Science Foundation of China [61425005]
  2. China Scholarship Council
  3. Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University
  4. Excellent Doctorate Foundation of Northwestern Polytechnical University

Ask authors/readers for more resources

Sensor arrays for audio and speech signal acquisition are generally required to have frequency-invariant beampatterns to avoid adding spectral distortion to the broadband signals of interest. One way to obtain frequency-invariant beampatterns is via superdirective beamforming. However, traditional superdirective beamformers may cause significant white noise amplification (particularly at low frequencies), making them sensitive to uncorrelated white noise. To circumvent the problem of white noise amplification, a method was developed to find the superdirective beamforming filter with a constraint on the white noise gain (WNG), leading to the so-called WNG-constrained superdirective beamformer. But this method damages the frequency invariance of the beampattern. In this paper, we develop a flatness-constrained robust superdirective beamformer. We divide the overall beamformer into two sub-beamformers, which are convolved together: one subbeamformer forms a lower order superdirective beampattern while the other attempts to improve the WNG. We show that this robust approach can improve the WNG while limiting the frequency dependency of the beampattern at the same time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available