4.2 Article

Competing spin-orbital singlet states in the 4d4 honeycomb ruthenate Ag3LiRu2O6

Journal

PHYSICAL REVIEW RESEARCH
Volume 4, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.043079

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  2. Consortium for Materials Properties Research in Earth Sciences
  3. Alexander von Humboldt Foundation
  4. [DE-AC-02-06CH11357]

Ask authors/readers for more resources

This study reveals that the layered ruthenate Ag3LiRu2O6 with d4 Ru4+ ions forms a honeycomb lattice of spin-orbit-entangled singlets at ambient pressure, providing a playground for frustrated excitonic magnetism. Under pressure, the singlet state does not exhibit the expected excitonic magnetism, but transitions to two other nonmagnetic phases were observed.
When spin-orbit-entangled d electrons reside on a honeycomb lattice, rich quantum states are anticipated to emerge, as exemplified by the d5 Kitaev materials. Distinct yet equally intriguing physics may be realized with a d-electron count other than d5. The magnetization, 7Li-nuclear magnetic resonance (NMR), and inelastic neutron scattering measurements, together with the quantum chemistry calculation, indicate that the layered ruthenate Ag3LiRu2O6 with d4 Ru4+ ions at ambient pressure forms a honeycomb lattice of spin-orbit-entangled singlets, which is a playground for frustrated excitonic magnetism. Under pressure, the singlet state does not develop the expected excitonic magnetism, but two successive transitions to other nonmagnetic phases were found in 7Li-NMR, neutron diffraction, and x-ray absorption fine structure measurements, first to an intermediate phase with moderate distortion of honeycomb lattice and eventually to a high-pressure phase with very short Ru-Ru dimer bonds. While the strong dimerization in the high-pressure phase originates from a molecular orbital formation as in the sister compound Li2RuO3, we argue that the intermediate phase represents a spin-orbit-coupled singlet dimer state which is stabilized by the admixture of upper-lying Jeff = 1-derived states via a pseudo-Jahn-Teller effect. The emergence of competing electronic phases demonstrates rich spin-orbital physics of d4 honeycomb compounds, and this finding paves the way for realization of unconventional magnetism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available