3.8 Proceedings Paper

DST: Dynamic Substitute Training for Data-free Black-box Attack

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/CVPR52688.2022.01396

Keywords

-

Funding

  1. NSFC [62176061]
  2. Shanghai Municipal Science and Technology Major Project [2018SHZDZX01]
  3. Shanghai Research and Innovation Functional Program [17DZ2260900]

Ask authors/readers for more resources

With the increasing applications of deep neural network models in computer vision tasks, it becomes important to study the vulnerability of these models to adversarial examples. Existing methods are limited by the static network structure of the substitute model, whereas the proposed dynamic substitute training attack method allows better learning from the target model.
With the wide applications of deep neural network models in various computer vision tasks, more and more works study the model vulnerability to adversarial examples. For data free black box attack scenario, existing methods are inspired by the knowledge distillation, and thus usually train a substitute model to learn knowledge from the target model using generated data as input. However, the substitute model always has a static network structure, which limits the attack ability for various target models and tasks. In this paper, we propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model. Specifically, a dynamic substitute structure learning strategy is proposed to adaptively generate optimal substitute model structure via a dynamic gate according to different target models and tasks. Moreover, we introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data, and facilitate the substitute model learning structural relationships from the target model multiple outputs. Extensive experiments have been conducted to verify the efficacy of the proposed attack method, which can achieve better performance compared with the state-of-the-art competitors on several datasets. Project page: https://wxwangiris.github.io/DST

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available