4.6 Article

Effect of quasiperiodic and random noise on many-body dynamical decoupling protocols

Journal

PHYSICAL REVIEW B
Volume 106, Issue 13, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.106.134306

Keywords

-

Funding

  1. Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. Dept. of Energy
  2. NSERC
  3. FRQNT
  4. Tomlinson Scholar Award
  5. National Science Foundation [PHY-1607611]

Ask authors/readers for more resources

This study investigates the influence of quasiperiodic and random noise on the discrete symmetry generators in many-body systems, revealing three stages of relaxation and explaining their relationship with the noise spectrum.
Symmetries (and their spontaneous rupturing) can be used to protect and engender novel quan-tum phases and lead to interesting collective phenomena. In the work of K. Agarwal and I. Martin [Phys. Rev. Lett. 125, 080602 (2020)], the authors described a general dynamical decoupling (polyfractal) protocol that can be used to engineer multiple discrete symmetries in many-body systems. This work expands on the former by studying the effect of quasiperiodic and random noise on such a dynamical scheme. We find generally that relaxation of engineered symmetry generators proceeds by (i) an initial relaxation on microscopic timescales to a prethermal plateau whose height is independent of noise, (ii) a linear relaxation regime with a noise-dependent rate, followed by (iii) a slow logarithmic relaxation regime that is only present for quasiperiodic noise. We glean the essential features of these regimes via scaling collapses and show that they can be generally explained by the spectral properties of the various noise waveforms considered. In particular, the quasiperiodic noise is characterized by highly time-dependent spectrum with a noise floor that mimics white noise, and peaks that grow sharper with time. We argue that both the noise floor and peaks contribute to the initial linear-in-time relaxation while the logarithmic regime is initiated when the peaks become sufficiently well resolved and cease to contribute to further relaxation. We provide numerical evidence to justify these findings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available